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Abstract. We study numerically the influence of strong Coulomb repulsion on the current through molec-
ular wires that are driven by external electromagnetic fields. The molecule is described by a tight-binding
model whose first and last site is coupled to a respective lead. The leads are eliminated within a pertur-
bation theory yielding a master equation for the wire. The decomposition into a Floquet basis enables an
efficient treatment of the driving field. For the electronic excitations in bridged molecular wires, we find
that strong Coulomb repulsion significantly sharpens resonance peaks which broaden again with increasing
temperature. By contrast, it has only a small influence on effects like non-adiabatic electron pumping and
coherent current suppression.

PACS. 05.60.Gg Quantum transport – 85.65.+h Molecular electronic devices – 72.40.+w Photoconduction
and photovoltaic effects – 73.63.-b Electronic transport in mesoscopic or nanoscale materials and structures

1 Introduction

Recent experiments on the conductance of single organic
molecules opened a new direction in mesoscopic trans-
port [1–3]. Of particular interest is thereby the influence of
electronic and vibronic excitations of the molecules which
leave their fingerprints in the resulting current-voltage
characteristics. At low temperatures, these effects become
more pronounced [4]. Much of our knowledge about excita-
tions of molecules is based on spectroscopy, i.e. the optical
response to light. In the context of molecular conduction,
it has been proposed to study as well the signatures of
such excitations in the transport quantifiers like the cur-
rent [5–7] and its fluctuations [8]. Such experiments are at
present attempted, but clearcut evidence for the proposed
effects is still missing because the irradiation also causes
unwanted thermal effects in the contacts, which in today’s
setups seem to dominate. One possibility to protect the
contacts against the radiation is using the evanescent light
at the tip of a near-field optical microscope.

Coupled quantum dots represent a setup with proper-
ties similar to those of molecular wires [9,10], albeit at dif-
ferent length and energy scales. As compared to molecular
wires, they are more stable and tunable, but have the dis-
advantage that only a few dots can be coupled coherently.
The transport properties of these “artificial molecules”
can be significantly modified by microwaves [10]. It has
for example been demonstrated experimentally that res-
onant excitations between the levels of double quantum
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dots result in the so-called photon-assisted transport, i.e.
a significant enhancement of the dc current [11, 12].

In addition to photon-assisted transport [13], other less
intuitive phenomena have been predicted in this context.
For example the so-called coherent suppression of tun-
nelling in a double-well potential due to a time-dependent
dipole force can also be found in ac driven transport
through coupled quantum dots: For characteristic ratios
between the amplitude and the frequency of the driving,
it has been predicted that the dc current [14–16] and the
shot noise [17] will be suppressed. A further prominent ef-
fect is adiabatic electron pumping, which is the generation
of a dc current by means of a periodic variation of the con-
ductor parameters in the absence of any net bias [18–21].
It has been proposed [22, 23] and experimentally demon-
strated [10, 11] that pumping is more effective at internal
resonances, i.e., beyond the adiabatic limit where, in addi-
tion, the pump current possesses a surprisingly low noise
level [24].

Periodically time-dependent quantum systems can be
described very efficiently within a Floquet theory which
originally has been derived for driven closed quantum sys-
tems [25] and later been generalised to dissipative quan-
tum systems [26,27]. Furthermore, it is possible to derive
Floquet theories for the description of transport through
mesoscopic conductors which are connected to external
leads. For cases in which electron-electron interactions
do not play any role, one can derive a Floquet scatter-
ing theory that provides exact expressions for the cur-
rent [17, 28] and its noise [8, 17]. Treating the coupling
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Fig. 1. Bridged molecular wire model consisting of N = 5
sites with internal tunnelling matrix elements ∆ and effective
wire-lead coupling strengths ΓL/R.

between the conductor and the leads perturbatively, one
can obtain a master equation for the reduced density oper-
ator of the wire. This enables a rather efficient treatment
of time-dependent transport after decomposing the wire
density operator into a Floquet basis. Then it is possible
to study relatively large driven conductors [29] and to in-
clude also electron-electron [30] and electron-phonon in-
teractions [31]. If the time-dependent field consists of one
or a few laser pulses, it is possible to obtain the density
operator by propagating the Liouville-von Neumann equa-
tion [32].

In this work, we derive in Sections 2 and 3 a Flo-
quet master equation formalism that captures situations
in which strong Coulomb repulsion restricts the excess
charge residing on the conductor to a single electron. For
later reference, we adapt in Section 4 our approach to
the case of spinless electrons and non-interacting elec-
trons. We then investigate in Section 5 the role of strong
Coulomb repulsion for photon-assisted transport through
bridged molecular wires, non-adiabatic electron pumping,
and coherent current suppression.

2 The wire-lead model

The system of the driven wire, the leads, and the cou-
pling between the molecule and the leads, as sketched in
Figure 1, is described by the Hamiltonian

H(t) = Hwire(t) + Hleads + Hwire−leads. (1)

The wire is modelled within a tight-binding description by
the molecular orbitals |n〉, n = 1, . . . , N , so that

Hwire(t) =
∑

n,n′,s

Hnn′(t) c†
ns

cn′s +
U

2
Nwire(Nwire−1), (2)

where c†ns (cns) creates (annihilates) an electron with spin
s at site |n〉 and [cns, c

†
n′s′ ]+ = δn,n′δs,s′ . The influence of

a driving field entails a T -periodic time-dependence on the
single-particle Hamiltonian Hnn′(t) = Hnn′(t + T ). The
last term in equation (2) captures the electron-electron
interaction within a capacitor model and the operator
Nwire =

∑
n,s c†nscns describes the number of excess elec-

trons residing on the molecule. Below we shall assume that
U is so large that only states with zero or one excess elec-
tron play a role.

The first and the last site of the molecule, |1〉 and |N〉,
couple via the tunnelling Hamiltonian

Hwire−leads =
∑

q,s

(VLq c†Lqsc1s + VRq c†RqscNs) + H.c. (3)

to the respective lead. The operator c†Lqs (c†Rqs) creates an
electron in the left (right) lead in the state |Lqs〉 which is
orthogonal to all wire states. It will turn out that the in-
fluence of the tunnelling Hamiltonian is fully characterised
by the spectral density

Γ�(ε) = 2π
∑

q

|V�q|2δ(ε − εq) (4)

which becomes a continuous function of the energy ε if
the lead states are dense. If all relevant lead states are
located in the centre of the conduction band, the energy-
dependence of the spectral densities is not relevant so that
they can be replaced by a constant, Γ�(ε) = Γ�. This de-
fines the so-called wide-band limit.

The leads are modelled as ideal Fermi gases

Hleads =
∑

q,s

(
εq c†LqscLqs + εq c†RqscRqs

)
, (5)

which are initially at thermal equilibrium with the chemi-
cal potential µL/R and, thus, are described by the density
operator

ρleads,eq ∝ exp [−(Hleads − µLNL − µRNR)/kBT ], (6)

where N� =
∑

q c†q�cq� denotes the electron number in lead
� = L, R. Then all lead properties can be expressed in
terms of the expectation value

〈c†�qsc�′q′s′〉 = δ��′δqq′δss′f�(εq), (7)

where f�(ε) = (1+e(ε−µ�)/kBT )−1 denotes the Fermi func-
tion. Since a typical metal screens all electric fields with
a frequency below the plasma frequency, we assume that
the bulk properties of the leads are not affected by the
laser irradiation.
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3 Master equation approach for strong
Coulomb repulsion

3.1 Perturbation theory

Most master equation approaches to electron trans-
port [30–34] are based on a perturbative treatment of
the wire-lead Hamiltonian Hwire−leads. Within these ap-
proaches, it is possible to include within a Floquet theory
the response to a time-periodic field exactly [8, 35]. The
derivation of a master equation starts from the Liouville-
von Neumann equation i�ρ̇(t) = [H(t), ρ(t)] for the total
density operator ρ(t) for which one obtains by standard
techniques the approximate equation of motion

ρ̇(t) = − i

�
[Hwire(t) + Hleads, ρ(t)] − 1

�2

∫ ∞

0

dτ

×
[
Hwire−leads,

[
H̃wire−leads(t − τ, t), ρ(t)

]]
. (8)

Here the first term corresponds to the coherent dynam-
ics of both the wire electrons and the lead electrons, while
the second term describes resonant electron tunnelling be-
tween the leads and the wire. The tilde denotes operators
in the interaction picture with respect to the molecule and
the lead Hamiltonian without the molecule-lead coupling,
X̃(t, t′) = U †

0 (t, t′)X U0(t, t′), where U0 is the propagator
without the coupling. The net (incoming minus outgoing)
electrical current through the left contact is given by mi-
nus the time-derivative of the electron number in the left
lead multiplied by the electron charge −e. From equa-
tion (8) follows for the current in the wide-band limit the
expression

IL(t) = e tr[ρ̇(t)NL]

= − e
ΓL

π�
Re

∫ ∞

0

dτ

∫
dε eiετ/�

× {〈c†1c̃1(t, t − τ)〉f̄L(ε) − 〈c̃1(t, t − τ)c†1〉fL(ε)
}
,

(9)

where f̄� = 1 − f� and 〈· · · 〉 = trwire ρwire · · · denotes the
average with respect to the wire density operator, which
still has to be determined. We emphasize that the expec-
tation values in equation (9) depend directly on the dy-
namics of the isolated wire and are thus influenced by the
driving.

3.2 Floquet theory

An important feature of the current formula (9) is its de-
pendence on solely the wire operators while all lead opera-
tors have been eliminated. Therefore it is sufficient to con-
sider the reduced density operator ρwire = trleads ρ of the
wire electrons. However, ρwire still obeys a time-dependent
master equation whose direct solution requires quite some
effort, in particular if one is interested in the behaviour
at long times. This effort can be reduced significantly by

exploiting the fact that the master equation (8) inher-
ited from the total Hamiltonian H(t) a T -periodic time-
dependence, which opens the way for a Floquet treatment.

3.2.1 Fermionic Floquet operators

One possibility for such a treatment is to use the Floquet
states of the central system, i.e. the driven wire, as a
basis. Thereby we also use the fact that in the wire
Hamiltonian (2), the single-particle contribution com-
mutes with the interaction term and, thus, these two
Hamiltonians possess a complete set of common eigen-
states. Here we start by diagonalising the first part of the
Hamiltonian which describes the single-particle dynamics
determined by the time-periodic matrix elements Hnn′(t).
According to the Floquet theorem, the corresponding (sin-
gle particle) Schrödinger equation possesses a complete
solution of the form

|Ψα(t)〉 = eiεαt/�|ϕα(t)〉, (10)

with the so-called quasienergies εα and the T -periodic
Floquet states

|ϕα(t)〉 =
∑

k

e−ikΩt|ϕα,k〉. (11)

The Floquet states and eigenenergies are obtained by solv-
ing the eigenvalue problem

⎛

⎝
∑

n,n′
|n〉Hnn′(t)〈n′| − i�

d

dt

⎞

⎠ |ϕα(t)〉 = εα|ϕα(t)〉, (12)

whose solution allows one to construct via Slater deter-
minants many-particle Floquet states. In analogy to the
quasimomenta in Bloch theory for spatially periodic po-
tentials, the quasienergies εα come in classes

εα,k = εα + k�Ω, k ∈ Z, (13)

of which all members represent the same physical solution
of the Schrödinger equation. Thus we can restrict ourselves
to states within one Brillouin zone like for example 0 ≤
εα < �Ω.

For the computation of the current it is convenient to
have an explicit expression for the interaction picture rep-
resentation of the wire operators. It can be obtained from
the (fermionic) Floquet creation and annihilation opera-
tors [36] defined via the transformation

cαs(t) =
∑

n

〈ϕα(t)|n〉cns. (14)

The inverse transformation

cns =
∑

α

〈n|ϕα(t)〉cαs(t) (15)

follows from the mutual orthogonality and the complete-
ness of the Floquet states at equal times [27]. Note that
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the right-hand side of equation (15) becomes time inde-
pendent after the summation.

The Floquet annihilation operator (14) has the inter-
action picture representation

c̃αs(t, t′) = U †
0 (t, t′) cαs(t)U0(t, t

′) (16)

= e−i(εα+UNwire)(t−t′)/�cαs(t′), (17)

with the important feature that the time difference t − t′
enters only via the exponential prefactor. This will allow
us to evaluate the τ -integration of the master equation (8)
after a Floquet decomposition. Relation (17) can easily be
shown by computing the time derivative with respect to t
which by use of the Floquet equation (12) becomes

d

dt
c̃αs(t, t′) = − i

�
(εα + UNwire) c̃αs(t, t′). (18)

Together with the initial condition c̃α(t′, t′) = cα(t′) fol-
lows relation (17). Note that the time evolution induced
by Hwire(t) conserves the number of electrons on the wire.

3.2.2 Master equation and current formula

In order to make use of the Floquet ansatz, we decompose
the master equation (8) and the current formula (9) into
the Floquet basis derived in the last subsection. For that
purpose we use the fact that we are finally interested in
the current at asymptotically large times in the limit of a
large interaction U . The latter has the consequence that
only wire states with at most one excess electron play a
role, so that the density operator ρwire can be decomposed
into the 2N + 1 dimensional basis {|0〉, c†αs(t) |0〉}, where
|0〉 denotes the wire state in the absence of excess electrons
and s =↑, ↓. Moreover, it can be shown that at large times,
the density operator of the wire becomes diagonal in the
electron number Nwire. Therefore a proper ansatz reads

ρwire(t)= |0〉ρ00(t)〈0|+
∑

α,β,s,s′
c†αs|0〉ραs,βs′(t)〈0|cβs′ . (19)

Note that we keep terms with α �= β, which means that we
work beyond a rotating-wave approximation. Indeed in a
non-equilibrium situation, the off-diagonal density matrix
elements ραβ will not vanish and neglecting them might
lead to artefacts [8,37]. In the context of molecular wires,
such a treatment of strong Coulomb repulsion by a re-
striction to at most one excess electron has recently also
been applied to incoherent [38–40] as well as to coherent
transport [41].

By inserting the decomposition (19) into the master
equation (8), we obtain an equation of motion for the ma-
trix elements ραs,βs′ = 〈0|cαsρwirec

†
βs′ |0〉. We evaluate the

trace over the lead states and compute the matrix element
〈0|cαs(t) . . . c†βs′(t)|0〉. Thereby we neglect the two-particle
terms which are of the structure c†αsc

†
βs|0〉〈0|cβscαs. For-

mally, these terms drop out in the limit of strong Cou-
lomb repulsion because they are accompanied by a rapidly

oscillating phase factor exp(−iUNwireτ/�). Then the τ -
integration results in a factor fL(εα,k +U) which vanishes
in the limit of large U . Since the total Hamiltonian (1) is
diagonal in the spin index s, we find that the density ma-
trix elements ραs,βs′ are spin-independent as well so that
after a transient stage

ρα↑,β↑(t) = ρα↓,β↓(t) ≡ ραβ(t) (20)

and ρα↑,β↓ = 0. Moreover, at large times, the density op-
erator (19) will acquire the time periodicity of the driving
field [8] and, thus, can be decomposed into the Fourier
series

ραβ(t) =
∑

k

e−ikΩtραβ,k (21)

and ρ00(t) accordingly.
After some algebra, we arrive at a set of N2 coupled

equations of motion for ραβ(t) which in Fourier represen-
tation read

i(εα − εβ − k�Ω)ραβ,k =
ΓL

2

∑

k′,k′′
〈ϕα,k′+k′′ |1〉〈1|ϕβ,k+k′′〉

×ρ00,k′
(
fL(εα,k′+k′′ ) + fL(εβ,k+k′′)

)

−ΓL

2

∑

α′,k′,k′′
〈ϕα,k′+k′′ |1〉〈1|ϕα′,k+k′′ 〉ρα′β,k′ f̄L(εα′,k+k′′ )

−ΓL

2

∑

β′,k′,k′′
〈ϕβ′,k′+k′′ |1〉〈1|ϕβ,k+k′′ 〉ραβ′,k′ f̄L(εβ′,k′+k′′)

+ same terms with the replacement 1, L → N, R.
(22)

In order to solve these equations, we have to eliminate
ρ00,k which is most conveniently done by inserting the
Fourier representation of the normalisation condition

tr ρwire(t) = ρ00(t) + 2
∑

α

ραα(t) = 1. (23)

In order to obtain for the current an expression that is
consistent with the restriction to one excess electron, we
compute the expectation values in the current formula (9)
with the reduced density operator (19) and insert the Flo-
quet representation (15) of the wire operators. Performing
an average over the driving period, we obtain for the dc
current the expression

I =
2eΓL

�
Re

∑

α,k

( ∑

β,k′
〈ϕβ,k′+k|1〉〈1|ϕα,k〉ραβ,k′ f̄L(εα,k)

−
∑

k′
〈ϕα,k′+k|1〉〈1|ϕα,k〉ρ00,k′fL(εα,k)

)
.

(24)

Physically, the second contribution of the current for-
mula (24) describes the tunnelling of an electron from the
left lead to the wire and, thus, is proportional to ρ00fL

which denotes the probability that a lead state is occu-
pied while the wire is empty. The first terms corresponds
to the reversed process namely the tunnelling on an elec-
tron from site |1〉 to the left lead.



F.J. Kaiser et al.: Coulomb repulsion effects in driven electron transport 205

The results of this section allow us the numerical com-
putation of the dc current through a driven conductor in
the the following way: first, we solve the quasienergy equa-
tion (12) which provides the coefficients 〈ϕα,k|n〉. Next, we
solve the master equation (22) and insert the solution into
the current formula (24).

4 Separating interaction and spin

In order to determine the role of a strong interac-
tion, we shall compare below our results to the non-
interacting case. Moreover, a particular consequence of
strong Coulomb repulsion is the mutual blocking of dif-
ferent spin channels. This motivates us to also compare to
the case of spinless electrons which is physically realised
by spin polarisation. In this section, we adapt our master
equation approach to these situations.

4.1 Spinless electrons

In order to describe spinless electrons, we drop in the ini-
tial Hamiltonian all spin indices. Physically, this limit is
realised by a sufficiently strong magnetic field that po-
larises all electrons contributing to the transport. By the
same calculation as in Section 3, we then obtain for the
current also the expression (24) but without the prefac-
tor 2. The factor 2 is also no longer present in the normal-
isation condition (23) which now reads

tr ρwire(t) = ρ00(t) +
∑

α

ραα(t) = 1. (25)

4.2 Non-interacting electrons

In the absence of interactions, U = 0, each spin degree of
freedom can be treated separately. Still one has to consider
for each spin projection up to N electrons so that the
relevant Hilbert space has the dimension 2N . Therefore,
it is more efficient to consider the single-particle density
matrix

Rαβ(t)=〈c†αs(t)cβs(t)〉t =R∗
βα(t)=

∑

k

e−ikΩtRαβ,k, (26)

which is of dimension N2 and nevertheless contains all
relevant information. The Fourier decomposition in the
last expression uses the fact that, at asymptotically large
times, Rαβ(t) becomes time-periodic.

We express the time derivative of Rαβ(t) with the mas-
ter equation (8) and insert for c̃α(t, t − τ) the Floquet
representation (18). After some algebra, we obtain for the

Fourier coefficients Rαβ,k the equation

i(εα − εβ + k�Ω)Rαβ,k =
ΓL

2

∑

k′

( ∑

β′,k′′
〈ϕβ,k′+k′′ |1〉〈1|ϕβ′,k+k′′ 〉Rαβ′,k′

+
∑

α′,k′′
〈ϕα′,k′+k′′ |1〉〈1|ϕα,k+k′′ 〉Rα′β,k′

− 〈ϕβ,k′−k|1〉〈1|ϕα,k′ 〉fL(εα,k′)

− 〈ϕβ,k′ |1〉〈1|ϕα,k′+k〉fL(εβ,k′)
)

+ terms with the replacement L, 1 → R, N. (27)

In contrast to the master equation (22) for the limit of
strong Coulomb repulsion, no blocking factors 1 − fL/R

emerge. This is characteristic for the non-interacting limit
and is also found in the exact scattering formula [8].

Using the single-particle density matrix Rαβ , one can
evaluate the current expectation value (9). Thereby the
spin degree of freedom enters simply as a factor 2 so that
we obtain for the current per spin the expression

I =
eΓL

�

∑

α,k

[
Re

∑

β,k′
〈ϕβ,k′+k|1〉〈1|ϕα,k〉Rαβ,k′

− |〈1|ϕα,k〉|2 fL(εα,k)
]
. (28)

For a detailed derivation see reference [36].

5 Interplay of dipole radiation and Coulomb
repulsion

In our model Hamiltonian (1) we have already specified
the interaction, the lead Hamiltonian, and the wire-lead
coupling. By contrast, for the Hamiltonian of the driven
wire, we have thus far only assumed that the external field
is periodic in time. In the following we focus on models
where the single-particle dynamics is determined by the
N -site tight-binding Hamiltonian

Hnn′(t) = −∆

N−1∑

n=1

(|n〉〈n + 1| + |n + 1〉〈n|)

+
N∑

n=1

{En + Axn cos(Ωt)}|n〉〈n|. (29)

Neighbouring sites are coupled by a tunnel matrix ele-
ment ∆. The onsite energies En are modulated by a har-
monically time-dependent dipole force, where the ampli-
tude A is given by the electrical field amplitude multiplied
by the electron charge and the distance between neigh-
bouring sites. xn = 1/2(N + 1 − 2n) denotes the scaled
position of site |n〉. Depending on the onsite energies En,
one observes various phenomena which we discuss in the
following.
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Fig. 2. Photon-assisted current in a bridged molecular wire
with length N = 8 and height EB = 10∆. Leads with a chemi-
cal potential difference eV = 5∆ couple to the wire with an ef-
fective strength Γ = 0.1∆. The driving amplitude is A = 0.3∆.
For U = ∞, the current for spinless electrons coincides with
the one for real electrons.

5.1 Resonant excitations of bridged molecular wires

A frequently studied model is the so-called bridged molec-
ular wire [42] sketched in Figure 1. It consists of a molecule
with N sites, where the first and the last site — the donor
|1〉 and the acceptor |N〉 — are connected to respective
leads. The energies of these two sites are assumed to be
close to the chemical potentials of the respective leads,
µL � E1 = EN � µR. The remaining N−2 orbitals lie well
above the chemical potentials at an energy EB � ∆ which
defines the bridge height. In the presence of laser excita-
tions, we expect an enhanced current whenever the energy
quanta of the laser field �Ω matches the energy difference
between donor/acceptor and one of the N−2 bridge levels.
This photon-assisted tunnelling indeed exhibits resonance
peaks which obey the scaling law Ipeak ∝ A2/(N−1)Γ [8].

Figure 2 shows the dc current as a function of the laser
frequency for the three approaches considered herein. In
all these cases, the resonance peaks are at the same fre-
quencies. As a further interesting feature, we find that in
the strongly interacting case U = ∞, the current does not
depend on whether one includes the spin degree of free-
dom. This behaviour can be understood qualitatively in
the following way: if there is no excess electron on the wire,
an electron can enter from both the “spin-up channel” and
the “spin-down channel”. By contrast, when leaving the
wire, the electron spin is preserved so that only either
channel is available. This means that including the elec-
tron spin effectively modifies the in-tunnelling rates by
a factor 2. The electron dynamics within the wire, how-
ever, is described by the coherent first term of the master
equation (8) which is spin-independent. Consequently, we
expect that the spin only plays a minor role whenever the
tunnelling from the donor to the acceptor becomes the
bottleneck for the electrons. This is indeed the case for
the transport across a barrier considered here.

U = ∞

U = 0, spinless
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Fig. 3. Temperature dependence of the widths of the reso-
nance peaks at Ω ≈ 9.71∆/�. The graph shows the full widths
at half of the maximum. All other parameters are as in Fig-
ure 2. For U = ∞, the values for spinless electrons and real
electrons coincide.

As compared to the non-interacting case, one notices
that strong Coulomb repulsion modifies the shape of the
peaks: they become slightly higher and much sharper. This
effect is more pronounced for large wires. A closer look at
the resonance peaks for wires with up to N = 10 sites (not
shown) indicates that the resonance widths scale roughly
like 1/N . This is possibly caused by the fact that the Cou-
lomb repulsion reduces the number of available (many-
particle) wire states and, thus, the number of decay chan-
nels. This relates to the observation made in reference [41],
namely that Coulomb repulsion can improve quantum co-
herence and thereby enhance the current.

Since quantum coherence is also temperature depen-
dent, it is natural to ask whether the resonance peaks
become sharper for lower temperatures. Figure 3 shows
the width of the central peak of Figure 2 as a function
of the temperature. While in the non-interacting case, the
peak widths are essentially temperature independent, the
situation changes for strong Coulomb repulsion: there one
finds that with an increasing temperature, the peaks be-
come roughly twice as broad once the temperature exceeds
T = ∆/kB. We attribute this behaviour to the reduced
coherence for thermal energies that are larger than the
tunnelling matrix element.

5.2 Non-adiabatic electron pumping

Another well studied phenomenon in driven transport is
coherent electron pumping, i.e., the creation of a non-
vanishing dc current by ac fields in the absence of any net
bias. For adiabatically slow driving, this effect exists only
in the absence of time-reversal symmetry [18–20]. Beyond
the adiabatic regime, this is no longer the case: For fast,
time-periodic driving fields, it can be shown that the rele-
vant symmetry is the so-called generalized parity which is
defined as the invariance under spatial reflection in com-
bination with a time shift by half a driving period [8].
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Fig. 4. Tight-binding model for two coupled quantum dots
in pump configuration, i.e. in the absence of a bias voltage
but with an internal bias E2 − E1 �= 0 which breaks reflection
symmetry.
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Fig. 5. Pump current for strong Coulomb repulsion and for
non-interacting electrons as a function of the frequency. The
dot levels with energies E1 = −2.5∆ and E2 = 2.5∆ are couple
to the leads with strength Γ = 0.3∆. The driving amplitude is
A = 3.7∆ and the temperature kBT = 0.005∆.

Non-adiabatic electron pumping is particularly interesting
because at internal resonances of the central system the
pump current can assume rather large values [10, 22, 35],
while at the same time the current noise is remarkably
low [24].

For studying the influence of strong Coulomb repulsion
on non-adiabatic electron pumping, we consider the setup
sketched in Figure 4. Of particular interest is the param-
eter regime with large internal bias and intermediate dot-
lead coupling because in this regime, the current-to-noise
ratio is most favourable [24]. The currents obtained for the
three considered approaches are shown in Figure 5. Again
we find that the spin degree of freedom is not of major in-
fluence, which indicates that the transport is governed by
internal excitations; cf. the discussion in the proceeding
subsection.

The influence of the Coulomb repulsion is a modifica-
tion of the current peak height up to 5%. This means that
interactions are here much less important than for photon-
assisted transport: the reason for this is that for our pump
configuration, one energy level lies below the Fermi energy

eV
µL

µR

ΓL

|1〉
∆

|2〉
∆

|3〉

ΓR

Fig. 6. Triple quantum dot configuration for coherent current
control: a large bias voltage and the unbiased dot levels with
En = 0 ensure optimal transport in the absence of the driving.

while the other lies well above. Thus in equilibrium for a
sufficiently small dot-lead coupling, the left site is occu-
pied while the right site is empty, whatever the interaction
strength. Thus, the double dot is populated with only one
electron so that interactions become irrelevant. Unless the
driving amplitude is huge, this occupation is altered only
slightly. Consequently interactions do not modify the cur-
rent significantly. We emphasize that for strong dot-lead
coupling Γ and finite interaction U , these arguments no
longer hold true.

5.3 Coherent current control

An intriguing example of quantum control is the so-called
coherent destruction of tunnelling in a double-well po-
tential by a suitable driving field [43], which can be
explained within a rotating-wave approximation: in the
driving dominated regime, the tunnel matrix element is
essentially replaced by an effective tunnel matrix element
∆eff = J0(A/�Ω), where J0 is the zeroth order Bessel
function of the first kind and A the driving amplitude
[44, 45]. Related effects have been predicted for driven
tight-binding lattices [46]. For driven transport between
two leads, the corresponding situation has been investi-
gated only recently: it has been found that driving fields
that suppress tunnelling in a closed driven system, also
suppress the current through the corresponding open sys-
tem [14,47].

A set-up in which this coherent current suppression
can be studied is sketched in Figure 6. It is characterized
by the fact that all internal levels lie within the voltage
window, i.e. below one chemical potential and above the
other. For this system, strong interaction has already a
significant influence on the current in the absence of any
driving field [41]: for U = 0, the system is half filled, which
means it is populated by N/2 electron, and the current is
independent of N . By contrast for U = ∞, the stationary
population is N/(N + 1) and the current becomes I ∝
1/(N + 1).

Figure 7 shows the influence of Coulomb repulsion on
the current suppression studied in reference [17]. Indepen-
dent of the interaction, one finds that the current almost
vanishes whenever the ratio A/�Ω matches a zero of the
Bessel function J0. If the driving amplitude is far from
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Fig. 7. Coherent current suppression as a function of the driv-
ing amplitude A for a wire that consists of N = 3 sites. The
applied voltage is eV = 50∆, the driving frequency Ω = 5∆,
and the wire-lead coupling Γ = 0.5∆.

the values for which the current is suppressed, we ob-
serve the behaviour found for the static situation, namely
that Coulomb repulsion reduces the current by a factor
1/(N + 1) for spinless electrons [41]. If one considers the
spin, this factor becomes 2/(2N +1). In the vicinity of the
current suppressions, by contrast, the influence of both
the inclusion of the spin and the interaction is less pro-
nounced. In this regime, the effective tunnel matrix ele-
ment ∆eff is small, so that tunnelling along the wire hap-
pens at a low rate. This again indicates that whenever the
transport is limited by the dynamics within the wire, the
influence of interaction is rather small.

6 Conclusions

We studied the influence of strong interaction on the trans-
port properties of ac-driven coherent conductors. In par-
ticular, we compared the strongly interacting case with the
opposite extreme of non-interacting electrons. Moreover,
we worked out the relevance of the spin degree of free-
dom for weak wire-lead coupling. In our studies, we con-
sidered three archetypical effects, namely photon-assisted
tunnelling through bridged molecular wires, non-adiabatic
electron pumping, and coherent current suppression.

The most significant effect is found for photon-assisted
tunnelling where Coulomb repulsion renders the resonance

linewidths much sharper. Thus unfortunately, interactions
might contribute to the difficulties in photon-assisted tun-
nelling experiments with molecular wires. By contrast,
Coulomb repulsion is not too relevant for electron pump-
ing in double quantum dots. For coherent current suppres-
sion, the same holds true only for parameters for which the
current is already significantly reduced. Outside this re-
gion, one finds that Coulomb repulsion reduces the current
essentially in the same way as in the absence of driving.

The two extreme cases of zero and very strong interac-
tion do not necessarily allow a simple interpolation. Thus,
it is desirable to extend the present studies to finite values
of the interaction strength, which requires the generalisa-
tion of our formalism to at least a second excess electron.
Moreover, the dc current is certainly not the only relevant
quantity for the characterization of the electron transport.
Investigating the influence of Coulomb repulsion on, e.g.,
the current noise would complement the picture drawn
above.

We thank M. Strass and A. Nitzan for interesting discus-
sions. This work has been supported by Deutsche Forschungs-
gemeinschaft through SFB 484 and SPP 1243. One of us
(FJK) acknowledges funding by Bayerisches Staatsministerium
für Wissenschaft, Forschung und Kunst through Elitenetzwerk
Bayern.

References

1. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour,
Science 278, 252 (1997)

2. X.D. Cui et al., Science 294, 571 (2001)
3. J. Reichert, R. Ochs, D. Beckmann, H.B. Weber, M.
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